Search results for "Computational offloading"

showing 2 items of 2 documents

Computational Offloading in Mobile Edge with Comprehensive and Energy Efficient Cost Function: A Deep Learning Approach

2021

In mobile edge computing (MEC), partial computational offloading can be intelligently investigated to reduce the energy consumption and service delay of user equipment (UE) by dividing a single task into different components. Some of the components execute locally on the UE while the remaining are offloaded to a mobile edge server (MES). In this paper, we investigate the partial offloading technique in MEC using a supervised deep learning approach. The proposed technique, comprehensive and energy efficient deep learning-based offloading technique (CEDOT), intelligently selects the partial offloading policy and also the size of each component of a task to reduce the service delay and energy …

Computer scienceReal-time computingTP1-118502 engineering and technologyBiochemistryVDP::Teknologi: 500::Elektrotekniske fag: 540ArticleAnalytical Chemistry0202 electrical engineering electronic engineering information engineeringcomputational offloadingElectrical and Electronic EngineeringInstrumentationenergy efficiencyMobile edge computingArtificial neural networkbusiness.industryChemical technologyDeep learningdeep learning020206 networking & telecommunicationsEnergy consumptionAtomic and Molecular Physics and OpticsTask (computing)cost functionUser equipment020201 artificial intelligence & image processingmobile edge computingArtificial intelligenceEnhanced Data Rates for GSM Evolutionremote executionbusinessEfficient energy useSensors
researchProduct

A Deep Learning Approach for Energy Efficient Computational Offloading in Mobile Edge Computing

2019

Mobile edge computing (MEC) has shown tremendous potential as a means for computationally intensive mobile applications by partially or entirely offloading computations to a nearby server to minimize the energy consumption of user equipment (UE). However, the task of selecting an optimal set of components to offload considering the amount of data transfer as well as the latency in communication is a complex problem. In this paper, we propose a novel energy-efficient deep learning based offloading scheme (EEDOS) to train a deep learning based smart decision-making algorithm that selects an optimal set of application components based on remaining energy of UEs, energy consumption by applicati…

QA75General Computer ScienceComputer scienceDistributed computingenergy efficient offloading02 engineering and technologyVDP::Matematikk og Naturvitenskap: 400::Informasjons- og kommunikasjonsvitenskap: 42001 natural sciencesuser equipmentComputational offloadingServer0202 electrical engineering electronic engineering information engineeringGeneral Materials ScienceVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550Mobile edge computingbusiness.industryDeep learning010401 analytical chemistryGeneral Engineeringdeep learning020206 networking & telecommunicationsEnergy consumption0104 chemical sciencesUser equipmentArtificial intelligencemobile edge computinglcsh:Electrical engineering. Electronics. Nuclear engineeringbusinesslcsh:TK1-9971Efficient energy useIEEE Access
researchProduct