Search results for "Computational offloading"
showing 2 items of 2 documents
Computational Offloading in Mobile Edge with Comprehensive and Energy Efficient Cost Function: A Deep Learning Approach
2021
In mobile edge computing (MEC), partial computational offloading can be intelligently investigated to reduce the energy consumption and service delay of user equipment (UE) by dividing a single task into different components. Some of the components execute locally on the UE while the remaining are offloaded to a mobile edge server (MES). In this paper, we investigate the partial offloading technique in MEC using a supervised deep learning approach. The proposed technique, comprehensive and energy efficient deep learning-based offloading technique (CEDOT), intelligently selects the partial offloading policy and also the size of each component of a task to reduce the service delay and energy …
A Deep Learning Approach for Energy Efficient Computational Offloading in Mobile Edge Computing
2019
Mobile edge computing (MEC) has shown tremendous potential as a means for computationally intensive mobile applications by partially or entirely offloading computations to a nearby server to minimize the energy consumption of user equipment (UE). However, the task of selecting an optimal set of components to offload considering the amount of data transfer as well as the latency in communication is a complex problem. In this paper, we propose a novel energy-efficient deep learning based offloading scheme (EEDOS) to train a deep learning based smart decision-making algorithm that selects an optimal set of application components based on remaining energy of UEs, energy consumption by applicati…